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Abstract. In finite dimensional Euclidean space, we prove the contractibility of the efficient frontier
of simply shaded sets. This work extends the result of Peleg [7], which confirms the contractibility
of the efficient frontier in the convex case.
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1. Introduction

In the present paper, we assume that the finite dimensional Euclidean space R
n is

ordered by the positive cone R
n+ := [0,+∞[n. In this context, Peleg [7] states that

the efficient frontier of a convex set of R
n is contractible. Our aim is to extend this

result to the nonconvex sets. More precisely, we establish the contractibility of the
efficient frontier for sets belonging to the class of simply shaded sets introduced by
Benoist–Popovici in [2, 3]. The proof of this result is similar to Peleg’s proof, the
idea being to move in the topological interior of the considered set.

This work extends those of several authors [1, 4, 8] which confirm the con-
nectedness of the efficient frontier for strictly quasiconcave vector maximization
problems in particular cases.

In Section 2, we introduce the class of simply shaded sets and we motivate this
concept by giving two important examples. In Section 3, we give basic properties
of these sets. Under a compactness assumption, we establish in Section 4 the con-
tractibility of the efficient frontier (see Theorem 4.2). Section 5 is devoted to an
extension of Theorem 4.2 when the compactness assumption fails. Finally, an open
problem is proposed in the conclusion.

2. Definitions of simply shaded sets and examples

Throughout this paper, we consider the n-dimensional Euclidean space R
n (n � 2)

ordered by the positive cone R
n+. We denote by {ei}ni=1 the canonical basis of R

n

and it shall be convenient in the sequel to define ei for each integer by putting
ei = ej if j − i ∈ nZ. We also set e = ∑n

i=1 ei = (1, . . . , 1). If x ∈ R
n and ρ > 0,

B(x, ρ) := {z ∈ R
n : ‖z − x‖ � ρ} denotes the closed ball centered at x of radius

ρ.
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As usual, given a subset X in R
n, we define the efficient frontier of X by

EffX := {x ∈ X : X ∩ (x + R
n
+) = {x}}.

It is well known that EffX = Eff (X−R
n+). Then, the study of the efficient frontier

of X can be reduced to the study of the efficient frontier of a free disposal set,
namely Y := X − R

n+. Recall that a subset Y of R
n is called free disposal in the

sense of Debreu (see [5]) if Y − R
n+ = Y.

The aim of the article is to give assumptions on Y to get a strongly contractible
efficient frontier. The efficient frontier of a free disposal set is not generally a
connected set. Indeed, if n := 2 and Y := {(1, 0), (0, 1)} − R

2+, the efficient
frontier of Y is reduced to {(1, 0), (0, 1)}. According to this example, the following
assumption seems to be necessary to obtain good topological properties of the
efficient frontier. This definition was previously introduced by Benoist–Popovici
[2] in a more general framework. If x and z are two vectors of R

n, we adopt the
following convention in notations: x � z means x − z ∈ R

n+, x > z means x � z

and x �= z, and x  z means that x − z ∈ R
� n+ .

DEFINITION 2.1. A closed and free disposal set Y of R
n is said to be simply

shaded if for any pair (y, z) ∈ Y × bd Y we have

y � z �⇒ y − R+(y − z) ⊂ bd Y. (1)

The following property shows that to prove that a set is simply shaded it suffices to
verify condition (1) only when the vector y − z belongs to an extremal ray of the
cone [0,+∞[n.

PROPOSITION 2.2. A closed and free disposal set Y of R
n is simply shaded if

and only if, for any pair (y, z) ∈ Y × bd Y , for any integer i ∈ {1, . . . , n},
y ∈ z + R+ei �⇒ y − R+(y − z) ⊂ bd Y. (2)

Proof. Suppose that (2) is true and let (y, z) ∈ Y × bd Y such that y � z.
Then, the vector y − z has a representation y − z = ∑n

i=1 αiei with αi � 0
for all i. From the free disposal assumption, to prove (1) it suffices to prove that
z − R+(y − z) ⊂ bd Y. Let x ∈ z − R+(y − z). There exists t � 0 such that
x = z − t (y − z). Put x0 = z and xi = xi−1 − tαiei where i ∈ {1, . . . , n} , and
let us prove by induction that xi ∈ bd Y for all i ∈ {0, . . . , n}. The property is true
for i = 0. Suppose that it is true for i − 1 (1 � i � n), namely xi−1 ∈ bd Y .
Since y � z+ αiei � xi−1 + αiei, we have xi−1 + αiei ∈ Y from the free disposal
assumption. By using (2) with the pair (xi−1 + αiei, xi−1), we deduce xi ∈ bd Y ,
and so the property is true for i. Hence x = xn ∈ bd Y and so (1) is proven. �

We give now two important classes of simply shaded sets.

EXAMPLE 2.3. A closed and free disposal convex set of R
n is simply shaded.

Indeed, it is a direct consequence of the following property satisfied for any convex
set Y : ∀t ∈]0, 1[, ∀(y, z) ∈ Y × int Y, ty + (1 − t)z ∈ int Y.



CONTRACTIBILITY OF EFFICIENT FRONTIER OF SIMPLY SHADED SETS 323

EXAMPLE 2.4. Let us consider the multiobjective problem

maximize g(c) = (g1(c), . . . , gn(c))

c ∈ C

where C is a nonempty compact convex subset of R
m and, for each integer i ∈

{1, . . . , n}, the function gi : C → R is continuous and strictly quasiconcave,
i.e., for all t ∈]0, 1[ and all (c1, c2) ∈ C2 satisfying gi(c1) �= gi(c2) we have
gi(tc1 + (1− t)c2) > min(gi(c1), gi(c2)). Then Y = g(C)−R

n+ is simply shaded.
Indeed, according to Proposition 2.2, it suffices to prove condition (2). Let i ∈

{1, . . . , n} and let (y1, y2) ∈ Y×bd Y such that y2 ∈ y1−R
�+ei . From the definition

of Y , there exists x1 ∈ g(C) such that x1 � y1. Suppose, to the contrary, that the
conclusion does not hold. There exists y ∈ y1−R+ei such that y ∈ intY . There then
exists x ∈ Y such that x  y, and without any loss of generality we can suppose
that x ∈ g(C) from the definition of Y . There exists (c1, c) ∈ C2 such that x1 =
g(c1) and x = g(c). For each integer k, set zk = g((1−1/(k + 1))c1+1/(k + 1)c).
For each integer j ∈ {1, . . . , n} and for each integer k ∈ N, we have{ 〈zk, ej 〉 > min (〈x1, ej 〉, 〈x, ej 〉) if 〈x1, ej 〉 �= 〈x, ej 〉;

〈zk, ej 〉 � 〈x, ej 〉 if 〈x1, ej 〉 = 〈x, ej 〉,
recalling that gj is strictly quasiconcave.

Let k ∈ N. Let j ∈ {1, · · · , n} such that j �= i. If 〈x1, ej 〉 �= 〈x, ej 〉, then
〈zk, ej 〉 > min(〈x1, ej 〉, 〈x, ej 〉) � min(〈y1, ej 〉, 〈y, ej 〉) = 〈y2, ej 〉, that can
be rewritten 〈zk, ej 〉 > 〈y2, ej 〉. Otherwise, if 〈x1, ej 〉 = 〈x, ej 〉, then we have
〈zk, ej 〉 � 〈x, ej 〉 > 〈y, ej 〉 = 〈y2, ej 〉, and we again can write 〈zk, ej 〉 > 〈y2, ej 〉.
On the other hand, for j = i we have 〈x1, ei〉 � 〈y1, ei〉 > 〈y2, ei〉. Since the
sequence {zk} converges to x1, we can write 〈zk, ei〉 > 〈y2, ei〉 for k large enough.

Thus, for k large enough zk  y2, which implies that y2 ∈ intY from the
free disposal assumption. This contradicts the initial assumption on y2, namely
y2 ∈ bd Y .

3. Basic properties of simply shaded sets

In the sequel, we shall say that a subset X of R
n has compact sections if for each

x ∈ R
n the section

X+(x) := X ∩ (x + R
n
+)

is compact. It is easy to check that an arbitrary set with compact sections is closed.
Moreover, if X is a free disposal set, X has compact sections if and only if for all
x ∈ X the section X+(x) is compact. Finally, if X is a compact subset of R

n, the
free disposal set Y := X − R

n+ has compact sections.
Let Y be a nonempty free disposal set with compact sections. For any vector

d > 0 and any y ∈ Y , the subset {t ∈ R+ : y + td ∈ Y } contains 0. Since the



324 J. BENOIST

section Y+(y) is compact, there exists ρ > 0 such that Y+(y) ⊂ B(0, ρ). Then, for
each t belonging to the previous subset we have y + td ∈ B(0, ρ), which implies
that t || d || − || y || � || y + td || < ρ. Hence the subset is also bounded
from above by (|| y || +ρ)/|| d ||. These remarks allow us to justify the following
definition.

DEFINITION 3.1. For any vector d > 0, we can define a function λd from Y into
R+ by the formula

λd(y) := sup{t ∈ R+ : y + td ∈ Y }, (3)

where y ∈ Y . Moreover, for each integer i we put

λi = λei .

We can easily check that y + λd(y)d ∈ bd Y. Morerover, according to the free
disposal assumption, y + td ∈ Y if and only if t � λd(y).

The following proposition gives various characterizations of simply shaded sets.
Let us recall that the correspondance Y+ is said to be lower semicontinuous (in
short l.s.c.) at y ∈ intY if for any z ∈ Y+(y) and any ε > 0, there exists η > 0
such that Y+(y′) ∩ B(z, ε) �= ∅ for all y′ ∈ B(y, η). We recall that Y+ is l.s.c. on
intY if it is l.s.c. at every y ∈ intY .

PROPOSITION 3.2. Let Y be a nonempty and free disposal set of R
n with com-

pact sections. The following assertions are then equivalent.
(A1) Y is simply shaded;
(A2) for each vector d > 0, the function λd is continuous on int Y ;
(A3) for each integer i, the function λi is continuous on int Y ;
(A4) the correspondance Y+ is l.s.c. on int Y .

Proof. (A1) �⇒ (A2) Let d > 0 and {yk} be a sequence in intY converging
to an element y ∈ intY . We must show that the sequence {λd(yk)} converges to
λd(y). There exists z ∈ Y such that z � yk for all integer k. Remarking that
z + λd(yk)d � yk + λd(yk)d and yk + λd(yk)d ∈ Y , we also have from the free
disposal assumption z+ λd(yk)d ∈ Y . Following the definition of λd(z) we obtain
0 � λd(yk) � λd(z) and the sequence {λd(yk)} is bounded. It then suffices to prove
that λd(y) is the unique point of accumulation of this sequence. Let {λd(ykj )}j be
a subsequence which converges to a nonnegative real t . Letting j → +∞ in the
following relation ykj + λd(ykj )d ∈ bd Y yields y + td ∈ bd Y , and consequently
t � λd(y). Suppose that the inequality is strict. By applying (1) with the pair
(y + λd(y)d, y + td), we obtain the inclusion y + λd(y)d − R+d ⊂ bd Y and in
particular y ∈ bd Y , which is impossible. Hence, the equality t = λd(y) is satisfied.

(A2) �⇒ (A4) Suppose that the correspondance Y+ is not l.s.c. on intY . Then
there exist y ∈ intY , z ∈ Y+(y), ε > 0 and a sequence {yk} in intY converging to
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y such that for all integers k

Y+(yk) ∩ B(z, ε) = ∅. (4)

Put d = z − y. Clearly we have d > 0. On one hand, for k large enough,
|| y − yk ||� ε/2, which implies∥∥∥∥z −

(
yk +

(
1 − ε

2(ε+ || d ||)
)
d

)∥∥∥∥ =
∥∥∥∥y − yk + ε

2(ε+ || d ||)d
∥∥∥∥

� || y − yk || +ε

2
� ε,

or equivalently yk + (1 − ε/2(ε+ || d ||)) d ∈ B(z, ε). Then, from (4), we deduce
that yk + (1 − ε/2(ε+ || d ||)) d �∈ Y and we obtain λd(yk) � 1 − ε/2(ε+ || d ||)
following the definition of λd(yk). On the other hand, we have λd(y) � 1. These
last two inequalities imply that the function λd is not continuous at y.

(A4) �⇒ (A3) Let i be an integer and {yk} be a sequence in intY converging to an
element y in intY . We must show that the sequence {λi(yk)} converge to λi(y). As
in the proof of implication (A1) �⇒ (A2), the sequence {λi(yk)} is bounded. Then
it suffices to prove that λi(y) is the unique point of accumulation of this sequence.
Let {λi(ykj )}j be a subsequence which converges to a nonnegative real t . Letting
j → +∞ in the following relation ykj + λi(ykj )ei ∈ bd Y yields y + tei ∈ bd Y ,
and consequently t � λi(y). Let us now prove the inverse inequality. Let ε > 0.
Since the correspondence Y+ is l.s.c. at y, we have for j large enough Y+(ykj ) ∩
B(y + λi(y)ei , ε) �= ∅. Select an element zj in Y+(ykj )∩B(y + λi(y)ei , ε). Since
zj � ykj+〈zj−ykj , ei〉ei,we deduce ykj+〈zj−ykj , ei〉ei ∈ Y from the free disposal
assumption. Then, following the definition of λi(ykj ), λi(ykj ) � 〈zj − ykj , ei〉.
Letting the inferior limit as j → +∞ in this last inequality yields t � λi(y) − ε.

Finally, taking ε → 0, we get t � λi(y). Hence we conclude λi(y) = t .

(A3) �⇒ (A1) Suppose that Y is not simply shaded. According to Proposition
2.2, there exist y ∈ Y , α > 0 and an integer i such that y − αei ∈ bd Y and
y − R+ei �⊂ bd Y. Then, y − βei ∈ int Y for some β > α, or equivalently there
exists ε > 0 such that B(y − βei,

√
nε) ⊂ Y . Then the sequence {zk} defined for

each integer k by zk := (y − βei)+ ε/(k + 2) e is included in intY and converges
to y − βei . We shall prove now that the sequence {λi(zk)} does not converge to
λi(y − βei). On the one hand, remarking that zk + (β − α)ei  y − αei and
recalling that y−αei ∈ bd Y , we have zk+ (β−α)ei �∈ Y. Following the definition
of λi(zk), we get λi(zk) � β − α. On the other hand, by definition of λi(y − βei),
we have λi(y − βei) � β. These two last inequalities allow us to conclude. �
REMARK 3.3. The assertion (A4) given in Proposition 3.2 has been used by Peleg
[7, Lemma 4.5] to prove the contractibility of the efficient set of a convex subset.
Here we shall use the characterization (A3).
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The following example shows that the functions λi associated to a simply shaded
set Y are not necessarily continuous on bd Y . However, from the characterization
(A3), they are continuous on intY .

EXAMPLE 3.4. If n := 3, let X be the convex hull of B((0, 0, 0), 1) ∪ {(1, 0, 1)}
and let Y be the convex set X − R

3+. The sequence {yk} := {(cos 1/k, sin 1/k, 0)}
converges to (1, 0, 0), but {λ3(yk)} is the zero sequence, which does not converge
to λ3(1, 0, 0) = 1. Hence λ3 is not continuous at the boundary point (1, 0, 0). Also
remark that the correspondence Y+ is not l.s.c. at this point.

Finally, we give a property of simply shaded sets which play a key role to obtain
the contractibility of the efficient frontier. This property is given in [2] in a more
general framework. Its proof is a straighforward consequence of (1).

PROPOSITION 3.5. Let Y be a simply shaded set of R
n with compact sections,

let y be an element of int Y and let i be an integer. Then, for each t < λi(y), we
have y + tei ∈ int Y .

4. The main results

We remember that a nonempty subset A of R
n is said to be strongly contractible

relatively to a point a in A if there exists a continuous map hA from [0, 1] ×A into
A such that hA(0, .) is the identity function on A, hA(1, .) is the constant function
equal to a, and hA(t, a) = a for all t ∈ [0, 1]. To prove the strong contractibility
of a set, it is often useful to apply the following classical result.

PROPOSITION 4.1. Let A and B be two subsets of R
n such that B ⊂ A. We

suppose that B is a retract of A, i.e. that there exists a continuous map f from A

into B such that f (b) = b for all b ∈ B (we shall say that f is a retraction from
A into B). If A is strongly contractible relatively to a point b of B, then B is also
strongly contractible relatively to the same point b.

Proof. We just need to consider the composed map hB = f ◦ h̃A, where h̃A
denotes the restriction of hA to the subset [0, 1] × B. �
Peleg [7] has shown that any nonempty closed, convex subset of R

n with compact
sections has a contractible efficient frontier. The following theorem generalizes this
property for simply shaded sets. Remark that Benoist–Popovici [3] have obtained
recently this result in the three-dimensional Euclidean space.

THEOREM 4.2. Let Y be a nonempty simply shaded set of R
n with compact

sections. Then its efficient frontier is strongly contractible.

Proof. Put

A := EffY ∪ int Y and B := EffY.
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In step 1, we shall build a function f from A into Y and we shall show in step 2
that this function is a retraction from A into B. In step 3, we shall prove that A
is strongly contractible relatively to each of its points and in particular to a given
point of B (according to step 2, B �= ∅). Then, according to Proposition 4.1, we
can conclude that B is strongly contractible.

Step 1. We build a function f from A into Y .

We can define for each i a function ri : A → Y by ri(a) := a + (λi(a)/2)ei for
all a ∈ A. Indeed, the relation a + λi(a)ei ∈ Y implies from the free disposal
assumption that ri(a) ∈ Y , recalling that λi(a) � 0. The properties of the function
ri are given in the following lemma.

LEMMA 4.3. Let i be an integer. Then the following holds
(i) for all a ∈ A, ri(a) � a;
(ii) for all b ∈ B, ri(b) = b;
(iii) ri(A) ⊂ A;
(iv) the function ri is continuous.

Proof. (i) and (ii) are clear.
(iii) Two eventualities can arise from the definition of A. Either a ∈ intY , hence
ri(a) ∈ intY ⊂ A from Proposition 3.5. Or a ∈ EffY , hence in this case ri(a) =
a ∈ EffY ⊂ A.
(iv) Let a ∈ A and let us prove that ri is continuous at a. It is a consequence of
Proposition 3.2 (and the fact that intY is an open set) if a ∈ intY . We can now
suppose that a ∈ EffY . Let {ak} be a sequence in A converging to a. From (i),
we have ri(ak) � ak for each integer k. Then, since the sections are compact, the
sequence {ri(ak)} is bounded and it suffices now to show that ri(a) is the unique
point of accumulation of this sequence. Let {ri(akj )}j be a subsequence which
converges to a point b ∈ Y . Letting j → +∞ in the relation ri(akj ) � akj yields
b � a. We conclude that b = a recalling that a is an efficient point of Y . �
Now, according to Lemma 4.3, the function fk := rk ◦· · ·◦r0 from A into Y is well-
defined and continuous. Moreover for a ∈ A the sequence {fk(a)} is increasing, i.e.
. . . � fk(a) � . . . � f1(a) � f0(a), and is bounded from above since the section
Y+(a) is compact. Hence the sequence {fk} converges pointwise to a function f :
A → Y .

Step 2. We prove in this step that f is a retraction from A to B

Firstly let us prove that f (A) ⊂ B. Suppose, to the contrary, that there exists y ∈ A

such that f (y) �∈ EffY = B. There then exists z ∈ Y such that z > f (y). From
the free disposal assumption, we can suppose that z can be written z = f (y)+ tei ,
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for some i ∈ {1, . . . , n} and some t > 0. Since the sequence {fk(y)} converges to
f (y), we have for k large enough

fk(y)  f (y)− te. (5)

Select such an integer with the additional condition (k+1)−i ∈ nZ, which assures
that fk+1 = ri ◦ fk. We have f (y) � fk(y) + 〈f (y) − fk(y), ei〉ei recalling that
f (y) � fk(y) and z � fk(y) + (〈f (y)− fk(y), ei〉 + t) ei recalling the equality
z = f (y)+tei . Hence, following the definition of λi(fk(y)), we obtain λi(fk(y)) �
〈f (y)− fk(y), ei〉 + t, which implies

fk+1(y) = fk(y)+ λi(fk(y))

2
ei � fk(y)+ 1

2
(〈f (y)− fk(y), ei〉 + t) ei .

(6)

Thus, looking at coordinate i of (5) and (6), we obtain

〈fk(y), ei〉 > 〈f (y), ei〉 − t and 〈fk+1(y), ei〉 � 1

2
〈fk(y)+ f (y), ei〉 + t

2
.

Combining these last inequalities, we conclude 〈fk+1(y), ei〉 > 〈f (y), ei〉, which
contradicts the fact that f (y) � fk+1(y). This proves that f (A) ⊂ B.

Moreover, from Lemma 4.3, fk(b) = b for all b ∈ B and for all integers k.
Letting k → +∞ in this last equality yields f (b) = b.

To conclude the step, it suffices now to prove that the function f is continuous.
Let {yk} be a sequence in A converging to a point y of A. We must prove that the
sequence {f (yk)} converges to f (y). Given ε > 0, we assert that there exists η > 0
such that

f (A) ∩ f (y)+ [−η,+∞[n ⊂ B(f (y), ε). (7)

Indeed, otherwise we can find a sequence {zk} in f (A) such that for all k

zk � f (y)− 1

k + 1
e and zk �∈ B(f (y), ε). (8)

Since Y has compact sections and since f (A) ⊂ Y , the sequence {zk} is bounded.
Extracting subsequence if necessary, we may assume that this sequence converges
to an element z of Y . Letting k → +∞ in (8) yields z � f (y) and z �∈ B(f (y), ε/2).
It means that f (y) /∈ EffY , which contradicts the inclusion f (A) ⊂ B. Hence (7)
is proven.

Now, since the sequence {fk(y)} converges to f (y), there exists an integer k0

such that fk0(y) � f (y) − η/2e. By continuity of function fk0 and since f � fk0 ,
we obtain f (yk) � fk0(yk) � f (y) − ηe for k large enough. According to (7), we
conclude that f (yk) ∈ B(f (y), ε) for k large enough.

Step 3. We prove in this step that A is strongly contractible relatively to each of its
points.
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Let y0 be a point ofA. Fix ρ > 0 such that B(e, ρ) ⊂ R
� n+ . PutK := ⋃

t�0 tB(e, ρ)

which is a closed convex cone with nonempty interior satisfying K\{0} ⊂ ]0,+∞[n.
Since y0 −]0,+∞[n is an open set included in Y , it is also included in intY .
Consequently y0 − (K \ {0}) ⊂ intY ⊂ A, which implies

y0 −K ⊂ A (9)

Firstly let us prove that the function k from R
n into R defined for each y ∈ R

n by
k(y) := sup{t ∈ R : y + te ∈ y0 − K} is well-defined. Let y ∈ R

n. If y �= y0

the equality y − || y0 − y ||/ρe = y0 − || y0 − y ||/ρ (e + ρy0 − y/|| y0 − y ||)
implies that −|| y0 − y ||/ρ belongs to the set {t ∈ R : y + te ∈ y0 − K}, and
consequently it is nonempty. This property is also true if y = y0. Moreover, if t
belongs to the previous set, we have y0−y � te, which implies that 〈y0−y, e1〉 � t

and so this subset is bounded from above. Hence k(y) is well-defined. Moreover,
since y0 −K is closed, we easily check that y + k(y)e ∈ y0 −K. Now let us prove
that k is a continuous function. Let (y1, y2) ∈ R

2n. If y1 �= y2, the equality

y2 + (k(y1)− || y2 − y1 ||/ρ) e =
y1 + k(y1)e − || y2 − y1 ||/ρ (e − ρy2 − y1/|| y2− y1 ||)

implies that k(y1) − || y2 − y1 ||/ρ � k(y2), or equivalently k(y1) − k(y2) �
|| y2 − y1 ||/ρ. This last inequality is also true if y1 = y2. Since y1 and y2 play the
same role, we conclude that | k(y2)− k(y1) |� || y2 − y1 ||/ρ and k is continuous.

It is now easy to deduce that the function hA from [0, 1] × A into R
n defined

for each (t, y) ∈ [0, 1] ×A by

hA(t, y) :=
{
y + 2tk(y)e if 0 � t � 1

2
2(1 − t)(y + k(y)e)+ (2t − 1)y0 if 1

2 � t � 1

is also continuous. Moreover, it is obvious that hA(0, .) is the identity function,
that hA(1, .) is the constant function y0, and that hA(t, y0) = y0 for all t ∈ [0, 1].
To conclude, it suffices now to prove the inclusion hA([0, 1] × A) ⊂ A. Let
(t, y) ∈ [0, 1] × A. If 1/2 � t � 1, hA(t, y) belongs to the line segment join-
ing y + k(y)e and y0. These last two points belong to the convex set y0 − K.
Hence hA(t, y) ∈ y0 − K, and so hA(t, y) ∈ A from (9). The case t = 0 is
evident since hA(t, y) = y. Suppose now that 0 < t � 1/2. If k(y) < 0, then
y  hA(t, y) and so hA(t, y) ∈ intY ⊂ A from the free disposal assumption. If
now k(y) � 0, the equality hA(t, y) = y + k(y)e + (2t − 1)k(y)e implies that
hA(t, y) ∈ (y0 −K)−K = y0 −K and again we have hA(t, y) ∈ A from (9). �

Applying Theorem 4.2 for convex sets (see Example 2.3), we retrieve Peleg’s
result.

COROLLARY 4.4. Let X be a nonempty closed convex set of R
n with compact

sections. Then its efficient frontier is contractible.
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Proof. Put Y := X − R
n+ and recall that EffY = EffX. Y is a closed, free

disposal and nonempty convex set with compact sections. Then, according to Ex-
ample 2.3, Y is a nonempty simply shaded set with compact sections and, applying
Theorem 4.2, we conclude that EffX is contractible. �

We can also state a result of contractibility for the efficient frontier of a mul-
tiobjective problem (see Example 2.4).

COROLLARY 4.5. Under the assumptions of Example 2.4, the efficient frontier
of the multiobjective problem, i.e., the efficient frontier of g(C), is strongly con-
tractible.

Proof. Put Y = g(C)− R
n+ and recall that Eff g(C) = EffY . Y is a closed, free

disposal and nonempty set with compact sections. Moreover, according to Example
2.4, Y is nonempty and simply shaded. Hence, applying Theorem 4.2, we conclude
that Eff g(C) is strongly contractible. �

In the convex case, when EffY is closed, Peleg has proved that it is a retract of
Y . In the case of simply shaded sets, we can now easily obtain a similar result as
shown the following theorem.

THEOREM 4.6. Let Y be a nonempty simply shaded set of R
n with compact

sections. If its efficient frontier is closed, then it is a retract of Y .
Proof. For y ∈ Y , let d(y,Eff Y ) be the distance between y and EffY . Using

the notations of the proof of Theorem 4.2, we easily check that the function y !→
f (y − d(y,Eff Y )e) from Y into EffY is a retraction. �

5. An extension of Theorem 4.1 without any compactness assumption

Throughout this section, we suppose that Y is a proper (i.e., Y �= ∅ and Y �= R
n)

simply shaded set of R
n. The aim of this section is to suppress the compactness

assumption in Theorem 4.2. In the sequel, we shall replace it by the following one:

for all y ∈ Y and for all i ∈ N, y + Rei �⊂ bd Y. (10)

In others words, assumption (10) means that no affine line generated by an ei is
included in the boundary of Y . Clearly, if Y has compact sections then Y satisfies
assumption (10). The following proposition shows that the converse is true if Y is
a convex set.

PROPOSITION 5.1. Let Y be a proper closed and free disposal convex subset of
R
n. If no affine line generated by an ei is included in the boundary of Y then Y has

compact sections.
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Proof. We prove the contrapositive assertion. Suppose that Y has a section
Y+(y) which is not compact for some y ∈ Y . There then exists an unbounded
sequence {yk} included in Y+(y). Subsequencing if necessary, we may suppose
from the free disposal assumption that there exists i ∈ {1, . . . , n} such that, for all
integer k, yk ∈ y + R+ei . Consequently y + Rei ⊂ Y .

If ∂Y = ∅ then Y = intY is both an open and a closed subset of R
n which

contradicts that Y is proper. We can then choose an element z in ∂Y . Since Y is
a closed convex set, the element z + tei = lim

k→+∞
(1 − (1/k))z + 1/k(y + ktei)

belongs to Y for all t ∈ R. Hence z + Rei ⊂ Y which implies that z + Rei ⊂ ∂Y

recalling that z ∈ ∂Y and Y is a simply shaded set (see Example 2.3.). �
In fact, to assume that (10) is true is a weak assumption. Indeed, for n := 2, the

sets Y which do not satisfy assumption (10) are only the half-spaces ]−∞, α]×R

and R×] − ∞, α] with α ∈ R. In particular the set defined by Y := {(x, y) ∈
]0,+∞[2: y = 1/x} − [0,+∞[2 does not have the compact sections property, but
it verifies assumption (10).

The following example shows that assumption (10) is necessary to guarantee
the connectedness of the efficient frontier.

EXAMPLE 5.2. If n := 3, let Y := {(x, y, z) ∈ R
3 : y + (1 + z+)x � 0 and

x + (1 + z+)y � 0} where we set z+ := max(z, 0). If we assume z > 0, the set
{(x, y) ∈ R

2 : (x, y, z) ∈ Y } is the intersection of the two distinct half-planes
defined by the inequalities y + (1 + z)x � 0 and x + (1 + z)y � 0. Otherwise,
it is the half-space defined by the equality x + y � 0 . By sketching these sets,
it is easy to see that Y is simply shaded. But EffY = (bd Y \ Re3) ∩ (R2 × R+)
and consequently the efficient frontier of Y is not a connected set. Remark that
assumption (10) is not satisfied in this example since the line Re3 is included in the
boundary of Y .

The following theorem extends Theorem 4.2 by showing that assumption (10)
is sufficient to guarantee the connectedness of the efficient frontier of Y .

THEOREM 5.3. Let Y be a proper simply shaded set of R
n with no affine line

generated by an ei included in the boundary of Y . Its efficient frontier is then
strongly contractible.

Proof. As in the proof of Theorem 4.2, we shall build a retraction from A =
EffY ∪ int Y to B = EffY . The end result of the proof will be the same.

Although the functions λi are not generally defined in all the set Y , we can consider
their restrictions to the subset O := {y ∈ Y : Y+(y) is bounded}. More precisely,
for each integer i, we can define a function λ̃i from O into R+ by the formula
λ̃i(y) := sup{t ∈ R+ : y + tei ∈ Y } for all y ∈ O. With these definitions, we have
the following lemma.
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LEMMA 5.4. Let i be an integer. The following then holds:
(i) bd Y ⊂ O;
(ii) O is an open set for the induced topology on Y ;
(iii) the function λ̃i is locally bounded, i.e. for all y ∈ O there exist ε > 0 and

M > 0 such that λ̃i(z) � M for all z ∈ O ∩ B(y, ε);
(iv) the function λ̃i is continuous on O ∩ int Y .

Proof. Firstly, let us prove the relation Y \ O = {y ∈ Y : y + Rei ⊂ Y for
some i ∈ {1, . . . , n}}. Indeed, if y ∈ Y \O, we can find a sequence {yk} in Y+(y)
with lim

k→+∞ || yk ||= +∞. There then exists an integer i ∈ {1, . . . , n} such that

lim
k→+∞〈yk, ei〉 = +∞. Let k be an integer. Since yk � y+〈yk−y, ei〉ei and yk ∈ Y ,

we have y+〈yk−y, ei〉ei ∈ Y from the free disposal assumption. Letting k → +∞
in this last relation yields y + Rei ⊂ Y . The converse inclusion is immediate.
(i) Let y ∈ bd Y . Suppose, to the contrary, that y /∈ O. There exists an integer i
such that y + Rei ⊂ Y . Applying (2) with the pairs (y + (k + 1)ei, y) where k is
an arbitrary integer, we get y + ]−∞, k+ 1]ei ⊂ bd Y. Then, passing to the limit
as k → +∞ yields y + Rei ⊂ bd Y , which contradicts assumption (10).
(ii) Let us prove that Y \ O is closed for the induced topology on Y . Let {yk} be a
sequence in Y \O converging to an element y of Y . For each integer k there exists
an integer ik in {1, . . . , n} such that yk+Reik ⊂ Y. Subsequencing if necessary, we
may suppose that the index ik does not depend upon k. Since Y is closed, letting
k → +∞ in the last inclusion yields y+Rei ⊂ Y for some integer i in {1, . . . , n}.
Thus, we conclude that y ∈ Y \O.
(iii) Let y ∈ O. From (ii), there exists ε > 0 such that Y ∩ B(y,

√
nε) ⊂ O. In

particular y−εe ∈ O, which means that the set Y+(y−εe) is bounded. Remarking
that this bounded set is a neighbourhood of y, we easily conclude.
(iv) It suffices to again take the proof of the implication (A1) �⇒ (A2) of Propos-
ition 3.2, by using (iii) to prove that {λ̃i(yk)} is bounded. �

We can now define for each integer i a function r̃i from O ∩A into Y such that
r̃i(a) := a + (λ̃i(a)/2)ei for all a ∈ O ∩ A. The properties of the function r̃i are
given in the following lemma. Its proof is similar to the proof of Lemma 4.3 (iii)
(some justifications can be given by using Lemma 5.4).

LEMMA 5.5. Let i be an integer. The following then holds:
(i) for all a ∈ O ∩ A, r̃i(a) � a;
(ii) for all b ∈ B, r̃i(b) = b;
(iii) r̃i (O ∩ A) ⊂ O ∩ A;
(iv) the function r̃i is continuous.

We must now construct a continuous function from A into A∩O. To continue, we
need the following lemma.
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LEMMA 5.6. It is possible to define the function λe from Y into R+ by the formula
(3) with d = e. Moreover, λe is continuous.

Proof. Firstly let us prove that λe is well-defined. Let y ∈ Y . The subset {t ∈
R+ : y + te ∈ Y } contains 0. Moreover, since Y �= R

n, there exists a vector
z /∈ Y . Then, y + te � z for t large enough, and consequently y + te /∈ Y from
the free disposal assumption. Hence the previous set is also bounded and λe(y) is
well-defined. Since Y is closed, we easily check that y + λe(y)e ∈ Y .

Now let us prove that λe is a continuous function. Let (y1, y2) ∈ Y 2. The vector
y2+(λe(y1)− || y2−y1 ||)e = y1+λe(y1)e+(y2−y1− || y2−y1 || e) belongs to Y
from the free disposal assumption. Following the definition of λe(y2), we deduce
that λe(y1)− || y2 − y1 || � λe(y2), which is equivalent to λe(y1) − λe(y2) �
|| y2 − y1 ||. Since y1 and y2 play the same role, we conclude that | λe(y1) −
λe(y2) |�|| y2 − y1 ||, and so λe is continuous. �

Thanks to Lemma 5.4 (i), y+ λe(y)e ∈ O and so the set {t ∈ R+ : y+ te ∈ O}
contains λe(y). Hence we can define a function λ−1 from Y into R+ by the formula
λ−1(y) := inf{t ∈ R+ : y + te ∈ O} for all y ∈ Y . The properties of the function
λ−1 are given in the following lemma.

LEMMA 5.7. The following holds:
(i) for all y ∈ Y , 0 � λ−1(y) � λe(y);
(ii) for all y ∈ int Y , λ−1(y) < λe(y);
(iii) the function λ−1 is continuous.

Proof.
(i) It is clear.
(ii) Let y ∈ intY . Clearly we have λe(y) > 0. Moreover, recalling that y+λe(y)e ∈
O and that that O is an open set for the induced topology on Y , there exists
0 < t < λe(y) such that y − te ∈ O. Following the definition of λ−1, we have
λ−1(y) � t , and so the inequality is verified.
(iii) Let {yk} be a sequence in Y converging to an element y of Y .

Firstly let us prove that the sequence {λ−1(yk)} is bounded. From (i), it suffices
to prove that the sequence {λe(yk)} is bounded. Since the sequence {yk} converges,
there exists z ∈ Y such that yk � z for all integers k. Consequently yk + λe(yk)e �
z+λe(yk)e, which implies that z+λe(yk)e ∈ Y from the free disposal assumption.
By definition of λe(z), we obtain λe(yk) � λe(z). Hence the sequence {λ−1(yk)} is
bounded.

It then suffices to prove that λ−1(y) is the unique point of accumulation of
this sequence. Let {λ−1(ykj )}j be a subsequence which converges to a nonnegative
number t . Let us show that t = λ−1(y).

Firstly we show the inequality t � λ−1(y). It is true for t = 0. If t > 0,
for j large enough λ−1(ykj ) > 0, and following the definition of λ−1(ykj ) we get
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ykj + (1− 1/(j + 1))λ−1(ykj )e ∈ Y \O. Letting j → +∞ yields y+ te ∈ Y \O,

recalling that Y \ O is closed. Hence, by definition of λ−1(y), we deduce that
t � λ−1(y).

Suppose now that the inequality is strict, and set ε := (λ−1(y)− t)/2 > 0. We
have 0 � t + ε < λ−1(y). Then, by definition of λ−1(y), y + (t + ε)e ∈ Y \ O.

Since y + (t + ε)e  ykj + (λ−1(ykj ) + ε/2)e for j large enough, we deduce
ykj + (λ−1(ykj ) + ε/2)e ∈ Y \ O. Hence, by definition of λ−1(ykj ), we conclude
that λ−1(ykj )+ ε/2 � λ−1(ykj ), which is impossible. Thus the equality t = λ−1(y)

is proven. �
We can now define another function r−1 from A into Y such that for all a ∈ A

r−1(a) := a + (λ−1(a)+ λe(a))/2 e. The following properties of the function r−1

are straightforward consequences of Lemmas 5.6 and 5.7.

LEMMA 5.8. The following holds:
(i) for all a ∈ A, r−1(a) � a;
(ii) for all b ∈ B, r−1(b) = b;
(iii) r−1(A) ⊂ O ∩A;
(iv) the function r−1 is continuous.

In this context, it is easy to prove that the function f̃k := r̃k◦· · ·◦r̃0◦r−1 fromA into
Y is continuous for each integer k, and to prove that the sequence {f̃k} converges
pointwise to a function f̃ : A → Y which is a retraction from A into B. �
6. Conclusion

We have shown that the efficient frontier of any nonempty simply shaded set with
compact sections in finite dimensional Euclidean space ordered by the positive
cone is strongly contractible. By similar technics, it is not difficult to extend this
result to finite dimensional Euclidean space ordered by a polyhedral cone with a
nonempty interior, or more generally by a closed convex cone with a nonempty
interior and with a denumerable number of extremal rays (see [2] for the definition
of simply shaded set in this context). We conjecture that, under assumptions to be
defined, it is also valid in a Banach space ordered by a closed convex cone with a
nonempty interior and with a bounded base (see Luc [6, Theorem 3.6, p. 143] for
the convex case).
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